Source code for PseudoNetCDF.racmfiles.boxmodel

from ..sci_var import PseudoNetCDFFile
from numpy import dtype, fromstring, newaxis, vectorize, nan
from datetime import timedelta, datetime


[docs] def box_model_irr(irr_path, start_datetime): retval = box_model_conc(irr_path, start_datetime) for spc, var in retval.variables.items(): if spc not in ('TFLAG',): var.units = '%s/h' % (var.units.strip(),) return retval
[docs] def box_model_conc(conc_path, start_datetime): lines = open(conc_path, 'r').readlines()[3:] spc_names = [spc_name.strip() for spc_name in lines[0][:-1].split('\t')] data_block = ''.join(lines[1:]) line_format = dtype(dict(names=spc_names, formats=['f'] * len(spc_names))) conc = fromstring(data_block, dtype='f', sep='\t').view(line_format) result = PseudoNetCDFFile() result.SDATE = int(start_datetime.strftime('%Y%j')) result.STIME = int(start_datetime.strftime('%H%M%S')) result.createDimension('TSTEP', conc.shape[0]) result.createDimension('VAR', 1) result.createDimension('DATE-TIME', 2) for spc in spc_names: var = result.createVariable(spc, 'f', ('TSTEP',)) var[:] = conc[spc] var.long_name = spc.ljust(16) var.var_desc = spc.ljust(16) var.units = 'ppb' tflag = result.createVariable('TFLAG', 'i', ('TSTEP', 'VAR', 'DATE-TIME')) start_date = datetime.strptime(start_datetime.strftime('%Y%j'), '%Y%j') t_tflag = start_date + \ vectorize(lambda h: timedelta(hours=float(h)))( conc[spc_names[0]].astype('d')) tflag[:, :, 0] = vectorize(lambda d: int( d.strftime('%Y%j')))(t_tflag[:, newaxis]) tflag[:, :, 1] = vectorize(lambda d: int( d.strftime('%H%M%S')))(t_tflag[:, newaxis]) tflag.units = "<YYYYMMDD, HHMMSS>" tflag.long_name = 'TFLAG'.ljust(16) tflag.var_desc = 'TFLAG'.ljust(16) return result
[docs] def box_model_mrg(conc_path, irr_path, start_datetime): retval = PseudoNetCDFFile() conc = box_model_conc(conc_path, start_datetime) irr = box_model_irr(irr_path, start_datetime) sorted_rxns = [k for k in irr.variables.keys() if k not in ('TFLAG', 'TIME')] sorted_rxns.sort() sorted_spcs = [k for k in conc.variables.keys() if k not in ('TFLAG', 'TIME')] sorted_spcs.sort() nsteps = retval.createDimension('TSTEP', len(irr.dimensions['TSTEP']) - 1) retval.createDimension('REACTIONS', len(sorted_rxns)) nsteps = len(retval.dimensions['TSTEP']) retval.createDimension('SPECIES', len(sorted_spcs)) retval.createDimension('PROCESS', 3) irr_vals = retval.createVariable('IRR', 'f', ('TSTEP', 'REACTIONS')) irr_vals.units = 'ppb/h' irr_vals.long_name = 'IRR'.ljust(16) irr_vals.var_desc = 'IRR'.ljust(16) ipr_vals = retval.createVariable( 'IPR', 'f', ('TSTEP', 'SPECIES', 'PROCESS')) ipr_vals.units = 'ppb/h' ipr_vals.long_name = 'IPR'.ljust(16) ipr_vals.var_desc = 'IPR'.ljust(16) for rxni, rxn_name in enumerate(sorted_rxns): vals = irr.variables[rxn_name][:] vals = vals.repeat(2, 0)[1:-1].reshape(nsteps, 2).mean(1) irr_vals[:, rxni] = vals irr_vals[0, :] = nan retval.Reactions = ''.join([k.ljust(16) for k in sorted_rxns]) for spci, spc_name in enumerate(sorted_spcs): ipr_vals[:, spci, 0] = conc.variables[spc_name][:-1] ipr_vals[:, spci, 2] = conc.variables[spc_name][1:] ipr_vals[:, spci, 1] = ipr_vals[:, spci, 2] - ipr_vals[:, spci, 0] retval.Species = ''.join([k.ljust(16) for k in sorted_spcs]) retval.Process = 'INIT'.ljust(16) + 'CHEM'.ljust(16) + 'FCONC'.ljust(16) return retval