PseudoNetCDF.textfiles package
Submodules
PseudoNetCDF.textfiles.esrl_sonde module
- NOAA/GMD sounding data file produced on 2015/02/02 22:04:08 GMT …
Header lines = 45 Data columns = 21
- Flight number = BL049
Date [GMT] = 03-01-1992 Time [GMT] = 18:35:21
Location = Boulder, CO
- Longitude = -105.25000
Latitude = 40.00000
Launch altitude (km) = 1.743
Surface pressure (mb) = 826.790
- Surface temperature (deg) = 6.870
- Surface humidity (%) = 18.900
Turn altitude (km) = 30.699 Turn pressure (mb) = 10.20
Radiosonde number = 8815949
- Vaisala humicap sensor = A
Radiation correction = Yes
- Pressure sensor offset = 0.000
A/D System = 12 bit Tmax
- Radiosonde Total Col. Water = 2.322
Instrument Type = Ozone Sonde
- Original File Source = unknown
- Ozone sonde number = 5A8087
Solution = 1%
- Oltmans solution correction = Yes
Oltmans term A = 1.0000 Oltmans term B = 0.4000
Total ozone column (CMR) = 283 (41)
Total ozone column (SBUV) = 289 (47) Total ozone stop pressure = 10.28 Time (sec) to pump 100 ml = 28.230
Dry flowrate correction = 2.60 Background current (uA) = 0.071
Coefficients =
- Pump coefficient pc0 = 0.5955
pc1 = 0.5125 pc2 = -0.2353 pc3 = 0.0824
Pressure data source = Radiosonde Pressure Altitude data source = Radiosonde Geopot Altitude
Geo alt anchoring method = First/Launch Row Set to Launch Altitude
Time, Press, Praw, Alt, Tcorr, Temp,…
PseudoNetCDF.textfiles.shadoz_sonde module
Written to read files from http://croc.gsfc.nasa.gov/shadoz/
Module contents
- class PseudoNetCDF.textfiles.csv(*args, **kwds)[source]
Bases:
PseudoNetCDFFile
- pathstr
place to find csv file
- coordkeysiterable of strings
use these keys as dimensions and coordinate variables
- delimiterstr
use this as delimiter (default = ‘,’) renamed as sep for pandas
- namesiterable of strings or True
with pandas backend and names==True: header=’infer’ otherwise, passed directly as keyword
- backendstr or None
‘numpy’ numpy.genfromtxt or ‘pandas’ pandas.read_csv; defaults to pandas if available
- defaultcoordstr
if no coordkeys are found, use this str to create a arbitrary coordinate based on each record
- kwdsmappable
corresponds to numpy.genfromtxt or pandas.read_csv keywords
Note: currently only works when all coordinate variables are 1-d
- PseudoNetCDF.textfiles.ncf2csv(ifile, outpath, delimiter=',', coordkeys=['Time', 'time', 'time_bounds', 'TFLAG', 'ETFLAG', 'etam_pressure', 'etai_pressure', 'layer_bounds', 'layer47', 'layer', 'latitude', 'latitude_bounds', 'lat', 'lat_bnds', 'longitude', 'longitude_bounds', 'lon', 'lon_bnds'])[source]