pykpp.funcs package

Submodules

pykpp.funcs.am3 module

pykpp.funcs.am3.AM3_STD(A0, B0, C0)[source]
pykpp.funcs.am3.AM3_TROE(A0, B0, A1, B1, factor)[source]
pykpp.funcs.am3.AM3_USR1()[source]
pykpp.funcs.am3.AM3_USR10()[source]
pykpp.funcs.am3.AM3_USR11()[source]
pykpp.funcs.am3.AM3_USR12()[source]
pykpp.funcs.am3.AM3_USR13()[source]
pykpp.funcs.am3.AM3_USR14()[source]
pykpp.funcs.am3.AM3_USR15()[source]
pykpp.funcs.am3.AM3_USR16()[source]
pykpp.funcs.am3.AM3_USR17()[source]
pykpp.funcs.am3.AM3_USR18()[source]
pykpp.funcs.am3.AM3_USR19()[source]
pykpp.funcs.am3.AM3_USR2()[source]
pykpp.funcs.am3.AM3_USR21()[source]
pykpp.funcs.am3.AM3_USR22()[source]
pykpp.funcs.am3.AM3_USR24()[source]
pykpp.funcs.am3.AM3_USR25()[source]
pykpp.funcs.am3.AM3_USR3()[source]
pykpp.funcs.am3.AM3_USR4()[source]
pykpp.funcs.am3.AM3_USR5()[source]
pykpp.funcs.am3.AM3_USR51()[source]
pykpp.funcs.am3.AM3_USR52()[source]
pykpp.funcs.am3.AM3_USR53()[source]
pykpp.funcs.am3.AM3_USR54()[source]
pykpp.funcs.am3.AM3_USR57()[source]
pykpp.funcs.am3.AM3_USR58()[source]
pykpp.funcs.am3.AM3_USR59()[source]
pykpp.funcs.am3.AM3_USR6()[source]
pykpp.funcs.am3.AM3_USR60()[source]
pykpp.funcs.am3.AM3_USR61()[source]
pykpp.funcs.am3.AM3_USR7()[source]
pykpp.funcs.am3.AM3_USR8()[source]
pykpp.funcs.am3.AM3_USR8a()[source]
pykpp.funcs.am3.AM3_USR9()[source]
pykpp.funcs.am3.MCM_KBPAN()[source]
pykpp.funcs.am3.MCM_KFPAN()[source]

pykpp.funcs.camx module

pykpp.funcs.camx.CAMX_4(A0, Ea0, B0, Tr0, A1, Ea1, B1, Tr1, F, n)[source]
pykpp.funcs.camx.CAMX_6(A0, Ea0, B0, Tr0, A2, Ea2, B2, Tr2, A3, Ea3, B3, Tr3)[source]

pykpp.funcs.chimere module

pykpp.funcs.chimere.CHIMERE_JO3(rate)[source]
pykpp.funcs.chimere.CHIMERE_MTROE(A0, B0, C0, A1, B1, C1, N)[source]
Mapping:

A0 = tabrate(1,nr) B0 = tabrate(2,nr) C0 = tabrate(3,nr) A1 = tabrate(4,nr) B1 = tabrate(5,nr) C1 = tabrate(6,nr) N = tabrate(7,nr) M = ai TEMP = te 1. = dun

Original Code:
c1 = tabrate(1,nr)*exp(-tabrate(2,nr)/te) &

*(300d0/te)**tabrate(3,nr)

c2 = tabrate(4,nr)*exp(-tabrate(5,nr)/te) &

*(300d0/te)**tabrate(6,nr)

c3 = ai*c1 c4 = c3/c2 ex = dun/(dun + ((log10(c4) - 0.12d0)/1.2d0)**2) rate(nr,izo,ime,ivert) = c1*tabrate(7,nr)**ex/(dun + c4)

pykpp.funcs.chimere.CHIMERE_SPECIAL_1(A1, C1, A2, C2)[source]

f1 = A1*exp(-C1/TEMP) f2 = A2*exp(-C2/TEMP) rate = f1 * f2/(1. + f2)

pykpp.funcs.chimere.CHIMERE_SPECIAL_2(A1, C1, A2, C2)[source]

f1 = A1*exp(-C1/TEMP) f2 = A2*exp(-C2/TEMP) rate = f1/(1. + f2)

pykpp.funcs.chimere.CHIMERE_SPECIAL_3(A1, C1, A2, C2, A3, C3, A4, C4)[source]

f1 = A1*exp(-C1/TEMP) f2 = A2*exp(-C2/TEMP) f3 = A3*exp(-C3/TEMP) f4 = A4*exp(-C4/TEMP) rate = 2.*(f1 * f2 * f3 * f4/((1.+f3)*(1.+f4)))**(0.5)

pykpp.funcs.chimere.CHIMERE_SPECIAL_4(A1, C1, A2, C2, A3, C3, A4, C4)[source]

f1 = A1*exp(-C1/TEMP) f2 = A2*exp(-C2/TEMP) f3 = A3*exp(-C3/TEMP) f4 = A4*exp(-C4/TEMP) f3 = f3 / (1. + f3) f4 = f4 / (1. + f4) rate = 2.0*(f1*f2)**(0.5)*(1.-(f3*f4)**(0.5))*(1.-f4)/(2.-f3-f4)

pykpp.funcs.chimere.CHIMERE_TROE(A0, B0, C0, A1, B1, C1, N)[source]
Mapping:

A0 = tabrate(1,nr) B0 = tabrate(2,nr) C0 = tabrate(3,nr) A1 = tabrate(4,nr) B1 = tabrate(5,nr) C1 = tabrate(6,nr) N = tabrate(7,nr)

M = ai; M = third body concentration (molecules/cm3) and must be defined in the stdfuncs namespace

TEMP = te = bulk air temperature

  1. = dun

Original Code:
c1 = tabrate(1,nr)*exp(-tabrate(2,nr)/te) &

*(300d0/te)**tabrate(3,nr)

c2 = tabrate(4,nr)*exp(-tabrate(5,nr)/te) &

*(300d0/te)**tabrate(6,nr)

c3 = ai*c1 c4 = c3/c2 ex = dun/(dun + log10(c4)**2) rate(nr,izo,ime,ivert) = c1*tabrate(7,nr)**ex/(dun + c4)

pykpp.funcs.cmaq module

pykpp.funcs.cmaq.CMAQ_10(A0, B0, C0, A1, B1, C1, CF, N)[source]

CMAQ reaction rate form 10

K0 = CMAQ_1to4(A0, B0, C0) K1 = CMAQ_1to4(A1, B1, C1) K0 = K0 * M K1 = K0 / K1

M = third body concentration (molecules/cm3) and must be

defined in the stdfuncs namespace

Returns (K0 / (1.0 + K1))* (CF)**(1.0 / (1.0 / (N) + (log10(K1))**2))

pykpp.funcs.cmaq.CMAQ_10D(A0, B0, C0, A1, B1, C1, CF, N)[source]

Same as reaction rate form 10, but implemented to provide compatibility for fortran code that need a DOUBLE form

pykpp.funcs.cmaq.CMAQ_1to4(A0, B0, C0)[source]

CMAQ reaction rates form 1-4 have the form K = A * (T/300.0)**B * EXP(-C/T)

pykpp.funcs.cmaq.CMAQ_5(A0, B0, C0, Kf)[source]

CMAQ reaction form 5

K1 = CMAQ_1to4(A0, B0, C0)

Returns Kf / K1

pykpp.funcs.cmaq.CMAQ_6(A0, B0, C0, Kf)[source]

CMAQ reaction form 6

K1 = CMAQ_1to4(A0, B0, C0)

Returns Kf * K1

pykpp.funcs.cmaq.CMAQ_7(A0, B0, C0)[source]

CMAQ reaction form 6

K0 = CMAQ_1to4(A0, B0, C0)

Returns K0 * (1 + .6 * PRESS / 101325.) # Pressure is in Pascals

pykpp.funcs.cmaq.CMAQ_8(A0, C0, A2, C2, A3, C3)[source]

CMAQ reaction form 8

K0 = (A0) * exp(-(C0) / TEMP) K2 = (A2) * exp(-(C2) / TEMP) K3 = (A3) * exp(-(C3) / TEMP) K3 = K3 * M

Returns K0 + K3 / (1.0 + K3 / K2 )

pykpp.funcs.cmaq.CMAQ_9(A1, C1, A2, C2)[source]

CMAQ reaction rate form 9

K1 = (A1) * exp(-(C1) / TEMP) K2 = (A2) * exp(-(C2) / TEMP)

M = third body concentration (molecules/cm3) and must be

defined in the stdfuncs namespace

Returns K1 + K2 * M

pykpp.funcs.cmaq.OH_CO(A0, B0, C0, A1, B1, C1, CF, N)[source]

OH + CO reaction rate

*Note: Mostly like CMAQ_10, but slight difference in K1

K0 = CMAQ_1to4(A0, B0, C0) K1 = CMAQ_1to4(A1, B1, C1) K0 = K0 K1 = K0 / (K1 / M)

M = third body concentration (molecules/cm3) and must be

defined in the stdfuncs namespace

return (K0 / (1.0 + K1))* (CF)**(1.0 / (1.0 / (N) + (log10(K1))**2))

pykpp.funcs.geoschem module

pykpp.funcs.geoschem.FYRNO3(CN)[source]

GEOS-Chem equation FYRNO3 implemented based on GEOS-Chem version 9

pykpp.funcs.geoschem.GEOS_A(A0, B0, C0, A1, B1, C1)[source]

GEOS-Chem reaction form A

TMP_A0 = A0 * FYRNO3(A1)

Returns GEOS_STD(TMP_A0, B0, C0)

pykpp.funcs.geoschem.GEOS_B(A0, B0, C0, A1, B1, C1)[source]

GEOS-Chem reaction form B

TMP_A0 = A0 * ( 1. - FYRNO3(A1) )

Returns GEOS_STD(TMP_A0, B0, C0)

pykpp.funcs.geoschem.GEOS_C(A0, B0, C0)[source]

GEOS-Chem reaction form C

K1 = GEOS_STD(A0, B0, C0)

Returns K1 * (O2 + 3.5e18) / (2.0 * O2 + 3.5e18)

pykpp.funcs.geoschem.GEOS_E(A0, B0, C0, Kf)[source]

GEOS-Chem reaction form E

K1 = GEOS_STD(A0, B0, C0)

Returns Kf / K1

pykpp.funcs.geoschem.GEOS_F(A0, B0, C0)[source]
pykpp.funcs.geoschem.GEOS_G(A0, B0, C0, A1, B1, C1)[source]

GEOS-Chem reaction form A

K1 = GEOS_STD(A0, B0, C0) K2 = GEOS_STD(A1, B1, C1)

Returns K1 / ( 1.0 + K1 * O2 )

pykpp.funcs.geoschem.GEOS_HR(A0, B0, C0, A1, B1, C1)[source]

GEOS-Chem reaction form HR

** Not implemented returns 0.

pykpp.funcs.geoschem.GEOS_JO3(O3J)[source]

GEOS-Chem reaction form ozone photolysis

T3I = 1.0/TEMP Returs O3J * 1.45e-10 * exp( 89.0 * T3I) * H2O / ( 1.45e-10 * exp( 89.0 * T3I) * H2O + 2.14e-11 * exp(110.0 * T3I) * N2 + 3.20e-11 * exp( 70.0 * T3I) * O2 )

pykpp.funcs.geoschem.GEOS_JO3_2(O3J)[source]
pykpp.funcs.geoschem.GEOS_K(A0, B0, C0)[source]

GEOS-Chem reaction form K

** Not implemented returns 0.

pykpp.funcs.geoschem.GEOS_KHO2(A0, B0, C0)[source]

Implemented KHO2 based on GEOS-Chem version 9

pykpp.funcs.geoschem.GEOS_L(A0, B0, C0)[source]
pykpp.funcs.geoschem.GEOS_N(A0, B0, C0)[source]

GEOS-Chem reaction form N

** Not implemented returns 0.

pykpp.funcs.geoschem.GEOS_O(A0, B0, C0)[source]

GEOS-Chem reaction form O

** Not implemented returns 0.

pykpp.funcs.geoschem.GEOS_P(A0, B0, C0, A1, B1, C1, FCV, FCT1, FCT2)[source]

GEOS-Chem pressure dependent TROE falloff equation

if (FCT2 != 0.000000e+00):

CF = exp(-TEMP / FCT1) + exp(-FCT2 / TEMP)

elif (FCT1 != 0.000000e+00):

CF = exp(-TEMP / FCT1)

else:

CF = FCV

K0M = GEOS_STD(A0, B0, C0) * M

K1 = GEOS_STD(A1, B1, C1) K1 = K0M / K1

return (K0M / (1.0 + K1))* (CF)**(1.0 / (1.0 + (log10(K1))**2))

pykpp.funcs.geoschem.GEOS_Q(A0)[source]

GEOS-Chem reaction form Q

** Not implemented returns 0.

pykpp.funcs.geoschem.GEOS_STD(A0, B0, C0)[source]

GEOS-Chem standard reaction rate with the form K = A * (300 / T)**B * EXP(C / T)

Returns A0 * (300. / TEMP)**B0 * exp(C0 / TEMP)

pykpp.funcs.geoschem.GEOS_T(A0, B0, C0)[source]

GEOS-Chem reaction form T

** Not implemented returns 0.

pykpp.funcs.geoschem.GEOS_V(A0, B0, C0, A1, B1, C1)[source]

GEOS-Chem reaction form V

K1 = GEOS_STD(A0, B0, C0) K2 = GEOS_STD(A1, B1, C1) return K1 / (1 + K2)

pykpp.funcs.geoschem.GEOS_X(A0, B0, C0, A1, B1, C1, A2, B2, C2)[source]

GEOS-Chem reaction rate form Z

K0 = GEOS_STD(A0, B0, C0) K2 = GEOS_STD(A1, B1, C1) K3 = GEOS_STD(A2, B2, C2) K3 = K3 * M

Returns K0 + K3 / (1.0 + K3 / K2 )

pykpp.funcs.geoschem.GEOS_Y(A0, B0, C0)[source]

GEOS-Chem reaction form Y

A0, B0, and C0 are numeric inputs that are ignored IGNORES INPUTS per v08-02-04 update

pykpp.funcs.geoschem.GEOS_Z(A0, B0, C0, A1, B1, C1, A2, B2, C2)[source]

GEOS-Chem Z reaction rate form

K0 = GEOS_STD(A0, B0, C0) K1 = GEOS_STD(A1, B1, C1)*M K2 = GEOS_STD(A2, B2, C2)

Returns (K0 + K1) * (1 + H2O * K2)

pykpp.funcs.geoschem.JHNO4_NEAR_IR(HNO4J)[source]

Adding 1e-5 (1/s) to HNO4 photolysis to account for near IR

pykpp.funcs.geoschem.update_func_world(mech, world)[source]

Function to update globals for user defined functions

pykpp.funcs.geoschemkpp module

pykpp.funcs.geoschemkpp.GCARR(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GCIUPAC3(ko_300, n, ki_300, m, Fc)[source]
pykpp.funcs.geoschemkpp.GCJPL3(k0_300, n, ki_300, m)[source]
pykpp.funcs.geoschemkpp.GCJPLEQ(A0, B0, C0, A1, B1, C1, A2, B2, C2, FV, FCT1, FCT2)[source]
pykpp.funcs.geoschemkpp.GCJPLPR(A0, B0, C0, A1, B1, C1, FV, FCT1, FCT2)[source]
pykpp.funcs.geoschemkpp.GC_DMSOH(A0, B0, C0, A1, B1, C1)[source]
pykpp.funcs.geoschemkpp.GC_GLYCOHA(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GC_GLYCOHB(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GC_GLYXNO3(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GC_HACOHA(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GC_HACOHB(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GC_HO2NO3(A0, B0, C0, A1, B1, C1)[source]
pykpp.funcs.geoschemkpp.GC_OHCO(A0, B0, C0)[source]
pykpp.funcs.geoschemkpp.GC_OHHNO3(A0, B0, C0, A1, B1, C1, A2, B2, C2)[source]
pykpp.funcs.geoschemkpp.GC_RO2HO2(A0, B0, C0, A1, B1, C1)[source]
pykpp.funcs.geoschemkpp.GC_RO2NO(B, A0, B0, C0, A1, B1, C1)[source]
pykpp.funcs.geoschemkpp.GC_TBRANCH(A0, B0, C0, A1, B1, C1)[source]
pykpp.funcs.geoschemkpp.HET(spc_idx, rct_idx)[source]
pykpp.funcs.geoschemkpp.HO2_H2O(H2O, TEMP)[source]
pykpp.funcs.geoschemkpp.OH_O1D(J, H2O, TEMP, NUMDEN)[source]

REAL*8 J, H2O, TEMP, NUMDEN REAL*8 K1, K2, K3 REAL*8 N2, O2

pykpp.funcs.geoschemkpp.PHOTOL(pidx)[source]
pykpp.funcs.geoschemkpp.update_func_world(mech, world)[source]

Function to update globals for user defined functions

pykpp.funcs.kpp module

pykpp.funcs.kpp.ARR(A0, B0, C0)[source]

A0, B0 and C0 - numeric values used to calculate a reaction rate (1/s) based on the Arrhenius equation in the following form:

A0 * exp(-B0/TEMP) * (TEMP / 300.)**(C0)

Returns a rate in per time

pykpp.funcs.kpp.ARR2(A0, B0)[source]

A0 and B0 - numeric values used to calculate a reaction rate (1/s) based on the Arrhenius equation in the following form:

A0 * exp(B0/TEMP)

Returns a rate in per time

Note: ARR2 sign of B0 is different than ARR

pykpp.funcs.kpp.DP3(A1, C1, A2, C2)

A1, C1, A2, and C2 - numeric values used to calculate 3 rates (K0, K2, and K3), each of the form A * exp(-C / TEMP), to return a rate of the following form:

K1 + K2 * M * 1e6

Returns a rate in per time

pykpp.funcs.kpp.EP2(A0, C0, A2, C2, A3, C3)[source]

A0, C0, A2, C2, A3, and C3 - numeric values used to calculate 3 rates (K0, K2, and K3), each of the form A * exp(-C / TEMP), to return a rate of the following form:

K0 + K3 * M * 1e6 / (1. + K3 * M * 1e6 / K2)

Returns a rate in per time

pykpp.funcs.kpp.EP3(A1, C1, A2, C2)[source]

A1, C1, A2, and C2 - numeric values used to calculate 3 rates (K0, K2, and K3), each of the form A * exp(-C / TEMP), to return a rate of the following form:

K1 + K2 * M * 1e6

Returns a rate in per time

pykpp.funcs.kpp.FALL(A0, B0, C0, A1, B1, C1, CF)[source]

Troe fall off equation

A0, B0, C0, A1, B1, C1 - numeric values to calculate 2 reaction rates (K0, K1) using ARR function; returns a rate in the following form

K0M = K0 * M * 1e6 KR = K0 / K1

Returns (K0M / (1.0 + KR))* CF**(1.0 / (1.0 + (log10(KR))**2))

pykpp.funcs.kpp.k_3rd(temp, cair, k0_300K, n, kinf_300K, m, fc)[source]
pykpp.funcs.kpp.k_arr(k_298, tdep, temp)[source]

pykpp.funcs.mcm module

pykpp.funcs.mcm.MCMJ(idx, THETA)[source]
Parameters:
  • export (idx - index from MCM) –

  • degrees (THETA - zenith angle in) –

Returns:

photolysis frequency (s**-1) from TUV_J for closest surrogate.

pykpp.funcs.mozart4 module

pykpp.funcs.mozart4.MZ4_TROE(A0, B0, A1, B1, factor)[source]

Troe fall off equation as calculated in MOZART4

pykpp.funcs.mozart4.MZ4_USR1()[source]

USR1 reaction rate as defined in MOZART4

Returns 6.e-34 * (300.e0/TEMP)**2.4

pykpp.funcs.mozart4.MZ4_USR10()[source]

USR10 reaction rate as defined in MOZART4

Returns MZ4_TROE(8.e-27, 3.5e0, 3.e-11, 0e0, .5e0)

pykpp.funcs.mozart4.MZ4_USR11()[source]

USR11 reaction rate as defined in MOZART4

Returns MZ4_TROE(8.5e-29, 6.5e0, 1.1e-11, 1.0, .6e0)

pykpp.funcs.mozart4.MZ4_USR12()[source]

USR12 reaction rate as defined in MOZART4

Return MZ4_USR11() * 1.111e28 * exp( -14000.0 / TEMP )

pykpp.funcs.mozart4.MZ4_USR14()[source]

USR14 reaction rate as defined in MOZART4

Return 1.1e-11 * 300.e0/ TEMP / M

pykpp.funcs.mozart4.MZ4_USR2()[source]

USR2 reaction rate as defined in MOZART4

Returns MZ4_TROE(8.5e-29, 6.5e0, 1.1e-11, 1.e0, .6e0)

pykpp.funcs.mozart4.MZ4_USR21()[source]

USR21 reaction rate as defined in MOZART4

Returns TEMP**2 * 7.69e-17 * exp( 253.e0/TEMP )

pykpp.funcs.mozart4.MZ4_USR22()[source]

USR22 reaction rate as defined in MOZART4

Returns 3.82e-11 * exp( -2000.0/TEMP ) + 1.33e-13

pykpp.funcs.mozart4.MZ4_USR23()[source]

USR23 reaction rate as defined in MOZART4

fc = 3.0e-31 *(300.0/TEMP)**3.3e0 ko = fc * M / (1.0 + fc * M / 1.5e-12) Returns ko * .6e0**(1. + (log10(fc * M / 1.5e-12))**2.0)**(-1.0)

pykpp.funcs.mozart4.MZ4_USR24()[source]

USR24 reaction rate as defined in MOZART4

#REAL(kind=dp) ko ko = 1.0 + 5.5e-31 * exp( 7460.0/TEMP ) * M * 0.21e0 return 1.7e-42 * exp( 7810.0/TEMP ) * M * 0.21e0 / ko

pykpp.funcs.mozart4.MZ4_USR3()[source]

USR3 reaction rate as defined in MOZART4

Returns MZ4_USR2() * 3.333e26 * exp( -10990.e0/TEMP )

pykpp.funcs.mozart4.MZ4_USR4()[source]

USR4 reaction rate as defined in MOZART4

Returns MZ4_TROE(2.0e-30, 3.0e0, 2.5e-11, 0.e0, .6e0)

pykpp.funcs.mozart4.MZ4_USR5()[source]

USR5 reaction rate as defined in MOZART4

TINV = 1/TEMP ko = M * 6.5e-34 * exp( 1335.*tinv ) ko = ko / (1. + ko/(2.7e-17*exp( 2199.*tinv )))

Returns ko + 2.4e-14*exp( 460.*tinv )

pykpp.funcs.mozart4.MZ4_USR6()[source]

USR6 reaction rate as defined in MOZART4

Returns MZ4_TROE(1.8e-31, 3.2e0, 4.7e-12, 1.4e0, .6e0)

pykpp.funcs.mozart4.MZ4_USR7()[source]

USR7 reaction rate as defined in MOZART4

Returns MZ4_USR6() * exp( -10900./TEMP )/ 2.1e-27

pykpp.funcs.mozart4.MZ4_USR8()[source]

USR8 reaction rate as defined in MOZART4

Returns 1.5e-13 * (1. + 6.e-7 * boltz * M * TEMP)

pykpp.funcs.mozart4.MZ4_USR9()[source]

USR9 reaction rate as defined in MOZART4

REAL(kind = dp) ko, kinf, fc, tinv tinv = 1.0/TEMP ko = 2.3e-13 * exp( 600.0*tinv ) kinf = 1.7e-33 * M * exp( 1000.0*tinv ) fc = 1.0 + 1.4e-21 * H2O * exp( 2200.0*tinv )

Returns (ko + kinf) * fc

pykpp.funcs.racm module

pykpp.funcs.racm.RACM_THERMAL(A0, B0)[source]

RACM Thermal equation as defined in the RACM SBOX model

#REAL A0, B0 # RACM2 reaction rates have the form K = A * EXP(-B / T) # # Translation adds a 0 C return (A0 * exp(-B0 / TEMP))

pykpp.funcs.racm.RACM_THERMAL_T2(A0, B0)[source]

RACM Thermal T2 equation as defined in the RACM SBOX model

# REAL A0, B0 # REAL, PARAMETER :: C0 = 0. # # Translation adds a 0 C return (A0)*TEMP**2*exp(-(B0)/TEMP)

pykpp.funcs.racm.RACM_TROE(A0, B0, A1, B1)[source]

RACM_TROE equation as defined in the RACM SBOX model

K0 = (A0 * (TEMP/300.0)**(-B0)) K1 = (A1 * (TEMP/300.0)**(-B1)) K0 = K0 * M K1 = K0 / K1

Returns (K0 / (1.0 + K1))* CF**(1.0 / (1.0 / N + (log10(K1))**2))

pykpp.funcs.racm.RACM_TROE_EQUIL(A0, B0, A1, B1, A2, C2)[source]

RACM Troe equilibrium equation as defined in the RACM SBOX model

#REAL A0, B0, A1, B1, A2, C2 return RACM_TROE( A0, B0, A1, B1) * (1./A2 * exp(-C2 / TEMP))

Module contents