Note
Go to the end to download the full example code
Get COARDS formatted NetCDF TropOMI NO2¶
Shows how to get TropOMI as an xarray Dataset. This example downloads a NetCDF file with COARDS compliant metadata, which is opened and returned.
# sphinx_gallery_thumbnail_path = '_static/tropomicoards.png'
import pyrsig
rsigapi = pyrsig.RsigApi(bdate='2022-03-01', overwrite=True)
ds = rsigapi.to_netcdf('tropomi.offl.no2.nitrogendioxide_tropospheric_column')
print(ds.data_vars)
# Data variables:
# longitude (points) float32 ...
# latitude (points) float32 ...
# nitrogendioxide_tropospheric_column (points) float32 ...
# Longitude_SW (points) float32 ...
# Longitude_SE (points) float32 ...
# Longitude_NW (points) float32 ...
# Longitude_NE (points) float32 ...
# Latitude_SW (points) float32 ...
# Latitude_SE (points) float32 ...
# Latitude_NW (points) float32 ...
# Latitude_NE (points) float32 ...
# yyyyddd (points) int32 ...
# hhmmss (points) int32 ...
# time (points) datetime64[ns] ...
rsigapi = pyrsig.RsigApi(bdate='2022-03-02', overwrite=True)
ds = rsigapi.to_netcdf(
'tropomi.offl.no2.nitrogendioxide_tropospheric_column', grid=True
)
print(ds.data_vars)
# Data variables:
# column (points) int32 ...
# row (points) int32 ...
# count (points) int32 ...
# longitude (points) float32 ...
# latitude (points) float32 ...
# no2 (points) float32 ...
# time (points) datetime64[ns] ...
Total running time of the script: ( 0 minutes 0.000 seconds)