Note
Go to the end to download the full example code.
TOLNet Ozone Curtain Plot¶
This example shows how to acquire TOLNet data from UAH and make a curtain plot.
Initialize API and Find Data¶
# python -m pip install git+https://github.com/barronh/pytolnet.git
import pytolnet
api = pytolnet.TOLNetAPI()
# Find newest data from UAH
cldf = api.data_calendar('UAH')
# Choose newest?
data_id = cldf['regular_id'].max()
# Choose specific version
# data_id = 12607
Retrieve and Characterize Data¶
ds = api.to_dataset(data_id)
df = ds.to_dataframe().reset_index()
print(df.describe())
# Make a curtain plot
qm = ds['derived_ozone'].T.plot(figsize=(12, 4), vmin=30, vmax=100)
qm.figure.savefig(f'derived_ozone_{data_id}.png')

time altitude derived_ozone
count 210800 210800.000000 105281.000000
mean 2022-10-21 19:46:37.741176576 7.737000 52.797367
min 2022-10-21 15:30:13 0.312000 0.091280
25% 2022-10-21 17:22:06 4.024500 45.099998
50% 2022-10-21 19:53:13 7.737000 51.900002
75% 2022-10-21 22:09:50 11.449500 59.000000
max 2022-10-22 00:21:52 15.162000 141.000000
std NaN 4.295487 10.886586
Total running time of the script: (0 minutes 4.814 seconds)